Name:

Exam Style Questions

Completing the Square

Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser

You may use tracing paper if needed

Guidance

- 1. Read each question carefully before you begin answering it.
- 2. Don't spend too long on one question.
- 3. Attempt every question.
- 4. Check your answers seem right.
- 5. Always show your workings

Revision for this topic

www.corbettmaths.com/contents

Video 10

1. Write $x^2 + 8x + 6$ in the form $(x + a)^2 + b$, where a and b are constants.

(3)

2. Write $x^2 + 12x - 1$ in the form $(x + a)^2 + b$, where a and b are constants.

$$(x+6)^2-36-1$$

 $(x+6)^2-37$

- 3. $x^2 6x 3 = (x a)^2 b$, where a and b are constants
 - (a) Find the values of a and b.

$$(3(-3)^2 - 9 - 3)$$

 $(x-3)^2 - 12$
 $a =$ and $b = ...$

(b) Hence solve $x^2 - 6x - 3 = 0$

$$(\chi - 3)^{2} - 12 = 0$$

$$(\chi - 3)^{2} = 12$$

$$\chi - 3 = \pm \sqrt{12}$$

$$\chi = 3 \pm \sqrt{12} \quad \text{or} \quad \chi = 3 \pm 2\sqrt{3}$$

$$\chi = 3 + \sqrt{12} \quad \text{or} \quad \chi = 3 - 2\sqrt{5}$$

$$\chi = 3 + \sqrt{12} \quad \text{or} \quad \chi = 3 - 2\sqrt{5}$$

$$\chi = 3 + \sqrt{12} \quad \text{or} \quad \chi = 3 - 2\sqrt{5}$$

4. Using completing the square, solve $x^2 - 6x + 2 = 0$

$$(2^{-3})^{2} - 9 + 2^{-50}$$

 $(2^{-3})^{3} - 7^{-50}$
 $(2^{-3})^{3} = 7$
 $1 - 3 = \pm \sqrt{7}$
 $1 = 3 \pm \sqrt{7}$
 $2 = 3 + \sqrt{7}$ or $2 = 3 - \sqrt{7}$

x = or x =

5. Georgina rewrites the expression $x^2 + px + q$ by completing the square. He correctly obtains $(x - 5)^2 + 31$

Work out the values of p and q.

$$(x-5)^{2}+31$$

 $(x-5)(x-5)+31$
 $x^{2}-10x+25+31$
 $x^{2}-10x+56$

$$p = -10$$
 and $q = -6$

6. Write $x^2 - 3x + 7$ in the form $(x + a)^2 + b$

$$\left(x - \frac{3}{2}\right)^{2} - \frac{9}{4} + 7$$

$$\left(1 - \frac{3}{2}\right)^{2} - \frac{9}{4} + \frac{28}{4}$$

$$\left(1 - \frac{3}{2}\right)^{2} + \frac{19}{4}$$

7. Express $3x^2 + 18x - 1$ in the form $a(x + b)^2 + c$

$$3(x^{1}+6x-\frac{1}{3})$$

$$3[(x+3)^{2}-9-\frac{1}{3}]$$

$$3[(x+3)^{2}-\frac{27}{3}-\frac{1}{3}]$$

$$3[(x+3)^{2}-\frac{28}{3}]$$

$$3(x+3)^{2}-28$$

- (3)
- 8. Use completing the square to find the minimum point of the curve $y = x^2 6x + 1$

$$y = (x-3)^2 - 9 + 1$$

 $y = (x-3)^2 - 8$

(3,-8)

9. Use completing the square to find the minimum point of the curve $y = x^2 + 4x + 7$

he square to find the minimum point of the c
$$y = (x+2)^{2} - 4 + 7$$

$$y = (x+2)^{2} + 3$$