Note Higher tier students also require the 'GCSE (9-1) Mathematics Higher additional formulae' guide below.

For GCSE (9-1) Mathematics, all students should know...

Area of triangle = ½ bh

Area of parallelogram = bh

Circumference of circle = πd = $2\pi r$ Area of circle = πr^2

Area of trapezium = $\frac{1}{2}(a + b)h$

Volume of cuboids =

length × width × height

Volume of prisms =

length × area of cross section

For right-angled triangles, label the hypotenuse c & the other sides a and b ► Pythagoras' theorem $a^2 + b^2 = c^2$

For right-angled triangles, label the hypotenuse h, the side adjacent to the angle a & the side opposite the angle o

$$\sin \theta = \frac{o}{h}$$

speed =
$$\frac{\text{distance}}{\text{time}}$$

speed =
$$\frac{\text{distance}}{\text{time}}$$
 density = $\frac{\text{mass}}{\text{volume}}$

Compound interest

where P is principal amount

Amount = $P\left(1 + \frac{r}{100}\right)^n$ r is interest rate n is times interest applied

Probability P(A or B) = P(A) + P(B) - P(A and B)where P(A) is the probability of outcome A P(B) is the probability of outcome B

For GCSE (9-1) Mathematics, all students should know...

Area of triangle = 1/2 bh

Area of parallelogram = bh

Circumference of circle = πd = $2\pi r$ Area of circle = πr^2

Area of trapezium = $\frac{1}{2}(a + b)h$

Volume of cuboids =

length × width × height

Volume of prisms =

length × area of cross section

For right-angled triangles, label the hypotenuse c & the other sides a and b Yellow Pythagoras' theorem $a^2 + b^2 = c^2$

For right-angled triangles, label the hypotenuse h, the side adjacent to the \searrow angle a & the side opposite the angle o

$$\sin \theta = \frac{o}{h}$$

$$\cos \theta = \frac{a}{b}$$

$$\tan \theta = \frac{\sigma}{a}$$

$$\sin \theta = \frac{o}{h} \qquad \cos \theta = \frac{a}{h} \qquad \tan \theta = \frac{o}{a}$$

$$\text{speed} = \frac{\text{distance}}{\text{time}} \qquad \text{density} = \frac{\text{mass}}{\text{volume}}$$

density =
$$\frac{\text{mass}}{\text{volume}}$$

Compound interest

where P is principal amount

Amount = $P\left(1 + \frac{r}{100}\right)^n$ r is interest rate n is times interest applied

P(A or B) = P(A) + P(B) - P(A and B)Probability where P(A) is the probability of outcome A P(B) is the probability of outcome B

Note Higher tier students also require the 'GCSE (9-1) Mathematics formulae guide for all' above.

For GCSE (9-1) Mathematics, Higher tier students should also know...

In any triangle ABC where a, b and c are the lengths of the sides

Area of triangle = $\frac{1}{2}ab\sin C$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

The quadratic formula

The solutions of $ax^2 + bx + c = 0$ where $a \ne 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Probability

P(A and B) = P(A given B) P(B)

where P(A) is the probability of outcome A P(B) is the probability of outcome B

MATHEMATICS

For GCSE (9-1) Mathematics, Higher tier students should also know...

In any triangle ABC where a, b and c are the lengths of the sides

Area of triangle = $\frac{1}{2}ab\sin C$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule $a^2 = b^2 + c^2 - 2bc \cos A$

The quadratic formula

The solutions of $ax^2 + bx + c = 0$ where $a \neq 0$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Probability

P(A and B) = P(A given B) P(B)

where P(A) is the probability of outcome A P(B) is the probability of outcome B

GCSE (9-1)

MATHEMATICS

