For GCSE (9-1) Mathematics, all students should know...

For right-angled triangles, label the hypotenuse $c \&$ the other sides a and b Pythagoras' theorem $a^{2}+b^{2}=c^{2}$

For right-angled triangles, label the hypotenuse h, the side adjacent to the angle $a \&$ the side opposite the angle o $\boldsymbol{\operatorname { s i n }} \theta=\frac{o}{h} \quad \boldsymbol{\operatorname { c o s }} \theta=\frac{a}{h} \quad \boldsymbol{\operatorname { t a n }} \theta=\frac{o}{a}$
speed $=\frac{\text { distance }}{\text { time }}$

Compound interest

Amount $=P\left(1+\frac{r}{100}\right)^{n}$ where P is principal amount r is interest rate n is times interest applied

Probability $\quad P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$ where $P(A)$ is the probability of outcome A $P(B)$ is the probability of outcome B

For GCSE (9-1) Mathematics, all students should know...

For right-angled triangles, label the hypotenuse c \& the other sides a and b Pythagoras' theorem $a^{2}+b^{2}=c^{2}$

For right-angled triangles, label the hypotenuse h, the side adjacent to the angle a \& the side opposite the angle o $\boldsymbol{\operatorname { s i n }} \theta=\frac{o}{h}$ $\boldsymbol{\operatorname { c o s }} \theta=\frac{a}{h} \quad \boldsymbol{\operatorname { t a n }} \theta=\frac{o}{a}$
speed $=\frac{\text { distance }}{\text { time }}$
Compound interest
Amount $=P\left(1+\frac{r}{100}\right)^{n}$ where P is principal amount r is interest rate n is times interest applied

Probability $\quad P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$ where $P(A)$ is the probability of outcome A $P(B)$ is the probability of outcome B

Oxford Cambridge and RSA

Note Higher tier students also require the 'GCSE (9-1) Mathematics formulae guide for all' above.

For GCSE (9-1) Mathematics, Higher tier students should also know...

In any triangle $A B C$ where a, b and c are the lengths of the sides

Area of triangle $=1 / 2 a b \sin C$

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

The quadratic formula

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Probability

$$
P(A \text { and } B)=P(A \text { given } B) P(B)
$$

where $P(A)$ is the probability of outcome A $P(B)$ is the probability of outcome B

For GCSE (9-1) Mathematics, Higher tier students should also know...

In any triangle $A B C$ where a, b and c are the lengths of the sides

Area of triangle $=1 / 2 a b \sin C$

Sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
Cosine rule $a^{2}=b^{2}+c^{2}-2 b c \cos A$

The quadratic formula

The solutions of $a x^{2}+b x+c=0$ where $a \neq 0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Probability

$$
P(A \text { and } B)=P(A \text { given } B) P(B)
$$

where $P(A)$ is the probability of outcome A
$P(B)$ is the probability of outcome B

